
1

Artificial Intelligence in Zero Sum Games
Auguste Lehuger, Jean-Marie Lemercier, Ludovic Theobald

Abstract—This paper aims at explaining how to train an agent
to play a zero-sum game with complete information such as Tic-
Tac-Toe, Othello or Go. Given the rules of the game, this agent
will have to train only through self-play without any human
knowledge. To do so, we will rely upon AlphaZero’s algorithm,
DeepMind’s latest breakthrough in the field. This algorithm
comes in three part: the settings of the Game, the Monte-Carlo
Search Tree (MCTS) methods and the Neural Networks that
deduces the action to choose from a state of the board. The first
step of the project is to create the pipeline for a simple board
game such as Tic-Tac-Toe. Then, we will adapt it to more complex
games.

I. INTRODUCTION

The world of Artificial Intelligence has known many break-
through in recent years around the fields of Machine Learning
and Reinforcement Learning. Thanks to these technologies,
Deepmind has managed to defeat the world champion Go
player in 2016. Hence, these technologies bear a great potential
to answer specific tasks. Our goal is to understand the way
it works and to implement it on other tasks or games. Our
motivation stemmed from the fact that we could not play
against good IA in Blokus, a strategic board game.

A. Building the Game

Our first idea was to create an IA for Blokus, a well-know
strategic game where you have to reduce the opponent space
by placing different tiles on a 14x14 board. We developed it
with python with the PyGame library and created a random
IA that could play by the rules. Since Blokus’ board is 14 by
14: it means they are 314∗14 possible configurations and there
is around 1000 actions possible for each configuration. The
size of the state space and the action space involves a great
amount of training which led us to consider a more basic game:
Tic-Tac-Toe. Hence, we defined the rules: what were the state
space, the valid actions and the reward the agent received; and
a basic display.

Fig. 1. Blokus environment vs. Tic-Tac-Toe environment.

B. Building the training pipeline

In order to train our agent TTTAI (Tic-Tac-Toe Artificial
Intelligence) we followed DeepMind’s [4] paper and the
instruction gave by Surag Nair on his blog post [3]. The

idea behind is to perform MCTS on the tree of possibilities
to learn the value of various state of the board. Then, we
use these newly learn data to fit a convolutional neural net.
Click here to find our source code: Run main.py to play our AI

II. BACKGROUND AND RELATED WORK

Two technical aspects need to be properly considered here
: Monte Carlo Tree Search (MCTS) and Convolutional
Neural Networks (CNN).

A. Monte Carlo Tree Search

We’ve broached in Chapter 7 of our 3third lecture [1]
several tree search methods involving random choices and
sampling. MCTS is one of those, and it’s fairly recently used
in algorithms as ours to compute the policies of actions e.g. the
probability distributions π(s) that will guide our AI’s choice
across the game. At each step, MCTS expands a node : if it’s
already been visited, it expands again, and marks the passage
by raising a visit counter. Otherwise it adds the new node to
the current tree. The principle in our actual implementation is
further explained in IV-A

B. Convolutional Neural Network

Nothing new under the sun, we use a CNN for the reinforce-
ment learning, which structure is summarized in IV-B. Those
types of networks including convolutional layers grouped by
2 are particularly recommended when dealing with grid-based
structures as our board. In each series of rollouts (we refer
to them as episodes), we can extract training data of the form
(s, π(s), z). The neural network is a double headed network fθ
such that fθ(s) = (Pθ(s), vθ(s)). We train this neural network
by minimizing the loss function

J(s, θ) = ||z − vθ(s)||+ π(s)T log(Pθ(s)) + λ||θ||22
At each step, we will train our network with the former

training data (initialization is performed with uniform distri-
butions on the action space for the policies π(s)) and compare
its playing performances with a given threshold and update the
former network if the criterion is met.

III. THE ENVIRONMENT

Our objective is to create an environment that can be
general for any zero-sum game with perfect information.
Therefore, we created a general class called Game() that can
generate any two-player, adversarial and turn-based game. This
class contains several key methods getNextState(self, state,
player, action) ; getValidMoves(self, state, player) or getRe-
ward(self,player,state) that creates Board object that deals with
the specific game logic. Hence, the class Board() imposes rules

https://framadrop.org/r/VdI9MH1lCc#WDW4tPsEKIL7HSSymUlby3UAvE4QdRl3U0EiERce5UY=

2

and the class Game() defined a standardized way to define the
player, the state space and the action space for a parameter n.

• The player is either 1 or -1
• The state is a n*n numpy array
• The action is an integer between 0 and n*n +1
Since it is a perfect information game, the player has

accessed to all the board before making a decision. His action
consist of picking a tile to mark it with his color. The agent
gets a reward only in the end of the game: +1 if he wins, -1 if
he loses and 10−4 for a draw (in order to differentiate ’draw’
and ’unfinished game’). Here, the agents choice impacts the
board deterministically. The main challenge for the agent is
to find a strategy without knowing in advance the behavior
of his opponent and without searching in the entire tree of
possibilities. Creating a powerful AI for Othello would already
be a good real-world application as this game is played by
thousand of players across the globe.

Fig. 2. A random board that can be generate from the Game class. Here n=8.

IV. THE AGENT

In this project, the agent is simply an algorithm simulating a
player of the board game. The goal of the player is, of course,
to win the game, that is selecting a sequence of actions ai,
leading to a final state sT such that reward(sT) = 1. To
achieve this, the agent needs to evaluate a policy π(s) giving
the distribution of probability over the actions available from
state s.

For this purpose, the algorithm can be broken down into
two alternating parts detailed in II: a Monte-Carlo Tree Search
(MCTS) and a neural network. The interaction between the
entities and the superior algorithmic architecture is quickly
summarized in Fig. 5

A. MCTS implementation

Our tree search is composed of several phases : the first is
performing a rollout : we take for root a node s and perform a
simulation e.g. we choose the action a that maximizes a utility
function U(s, a) given by (1)

U(s, a) = Q(s, a) + cpuct.P (s, a).

√∑
bN(s, b)

1 +N(s, a)
(1)

where
- N(s, a) is the visit counter : in a tree search, the action a

has been taken N(s, a) times from node s
- Q(s, a) is the expected reward from playing action a at

node (s)

Fig. 3. Rollout system

- P(s, a) is the initial policy given by the neural network
(see IV) and cpuct is a hyperparameter tuning the degree of
exploration.

After playing action a, we update visit counter N(s, a) and
we get to the new node s’. s’ is either newly visited, in which
case we simply add this node to the tree, and initialize N(s’, b)
and Q(s’, b) to 0 for all actions b while calling the neural
network for the policy P(s’, .). In the other case, it has already
been visited and then we call the function rollout recursively
on s’ until a new node or a terminal state is reached. In
that case we back propagate to update all expected rewards
Q(s, a)inthepath.

The number of rollouts called at each node is a hyperparam-
eter of our model. Once all rollouts have been performed and
all values updated, we have produced examples e.g. samples
which will be turned into policies π(s) by just taking the
empirical mean of the visit counter N(s, .) and normalize it.
During a real game against a player, the agent will choose as
an action a∗ = argmaxa(π(s)).

B. CNN implementation

Our Convolutional Neural Network is composed of 2 hid-
den convolutional layers with batch normalization and same
padding. We then add a softmax-activated dense layer to output
the policies and actions.

Fig. 4. A summary of the layers of the CNN implemented.

C. Superior algorithm

The algorithm manipulates both this tree search and the
neural network to deliver optimal results. On one hand, Monte
Carlo Tree Search has a limited computing power to deliver a

3

somehow empirical optimal solution by performing rollouts:
the neural network then helps increasing accuracy in the values
for newly created nodes, thus converging faster toward an
optimal strategy. On the other hand, the CNN is only efficiently
trainable because the tree search allows to create consistent
and accurate data with the rollouts.

In that way, structures help each other increasing their
performances and that is the goal of our simple AlphaZero
implementation. The interaction process is represented on Fig.
5.

Fig. 5. Interaction between the superstructures of the algorithm

V. RESULTS AND DISCUSSION

The results shown here are obtained for the game Tic Tac
Toe, which is very simple.

Fig. 6. Performances of the agent over iterations

1) Evolution of performances with the number of iterations:
To assess the performances of our agent, we confronted it
against a player acting randomly, and we counted the amount
of games won, lost or which resulted in a draw. In Fig. 7,
we plotted these counts - for 500 games - against the number
of iterations of training the agent has been through, when the
agent does not do the first move. The dotted lines are the

performance of a non-trained agent, performing Monte-Carlo
rollouts with no knowledge from the neural network.

This figure shows a significant improvement from even a
single iteration of training, and a progressive improvement
over time.

The last model obtained was the 10x20 shallow 50 trained
on 50 iterations for 10 epochs each and with an MCTS
performing 20 rollouts. This model stands out to be the most
promising one according to the evolution graph. As a measure
of performance, we made him play against a random player
for 1000 games, the first time TTTAI starts; the second time
Random starts.

TABLE I
COMPETITION OVER 1000 GAMES: RANDOM IA AGAINST TRAINED

TTTAI

Environment config. Wins Losses Draws
TTTAI plays P1 982 5 13
TTTAI plays P2 849 13 138

Therefore our trained algorithm outperforms an untrained
algorithm that only performs rollouts. This is promising but
still the opponent were rather naive. We can ask ourselves if
the neural networks really learn something insightful ? Here
are three different boards that describe different situation: an
opening, a defense move and an attack. Below one can see
the policy predicted by the network.

Fig. 7. Prediction of the agent on 3 boards. (opening, defense, attack

The efficiency of the neural network to choose the right
action for a given board is what makes this algorithm so
powerful. Indeed, we made compete TTTAI with only 2
rollouts against an untrained network with 150 rollouts, we
realized TTTAI where winning in landslide (70% of the time
even when it played as P2).

VI. CONCLUSION AND FUTURE WORK

At first, we planned on creating an Artificial Intelligence
that could play and beat a player at the game Blokus, using
the same general method of AlphaZero. The environnement,
logic, and GUI corresponding to this game has been fully
implemented. However, this game leads to an action space
and a space state that are huge, and that would take month
to train with the AlphaZero framework. Hence, we here train
a agent to play a much simpler game : TicTacToe. Although
TicTicToe is solvable easily by a simple tree search - it has
a very small state tree - using AlphaZero method enabled us
to reimplement its different parts and to test them on a quick

4

example. Now that our training algorithm is shown to work,
we can easily extend it to more complex games.

Therefore, the natural evolution of our project is to apply
this training method, first to Othello, whose actions are really
close from those of TicTacToe, and then to Abalone or Blokus.
Moreover, some improvements can still be done on the training
pipeline. In particular, training data can be augmented by
taking into account the symmetries of the game.

A. Motivation for the Othello game

After demonstrating the efficiency of our methodology and
algorithm of Toc Tac Toe, we decided to apply it on the game
Othello. This game differs from Tic Tac Toe in two aspects :
first, the board is bigger, and secondly, the rules are differents.
However, the structure of the actions stays the same as for Tic
Tac Toe. At each turn, each player only as to choose one
position on the board. This similarity in the structure of the
action space makes Othello a natural extension to Tic Tac Toe.

B. Results on Othello

TABLE II
COMPETITION OVER 100 GAMES: RANDOM IA AGAINST TRAINED

OTHELLOAI

Environment config. Wins Losses Draws
OthelloAI plays P1 37 50 13
OthelloAI plays P2 30 55 15

As TABLE II shows, the agent playing Othello is not good,
and worst than a random agent. We propose two explanations
to this inefficiency. First, some ”depth recursion error” some-
times shows up while doing the training, which suggests that
the rollouts are not performed correctly (they run indefinitely)
for the Othello game. This error is intrinsically linked to our
coding of the rules of Othello since it didn’t happened for Tic
Tac Toe. Secondly, the model was trained with only 5 iterations
of 15 episodes each, which already took around 10 minutes,
using a rather shallow neural network, and performing only 20
rollouts per node. Fully training the agent to play on a 8× 8
board would take several days, since everything is longer in
this case : the training and evaluation of the network, the state-
action tree, and the time to converge to a good policy. Code
for it can be found here.

REFERENCES

[1] J. Read. Lecture III - Search and Optimization. INF581 Advanced Topics
in Artificial Intelligence, 2019.

[2] O. Pietquin. Lecture VIII - Scaling up Reinforcement Learning. INF581
Advanced Topics in Artificial Intelligence, 2019.

[3] S. Nair. A Simple Alpha(Go) Zero Tutorial https://web.stanford.edu/
∼surag/posts/alphazero.html, 2017.

[4] D. Silver, T. Hubert and J. Schrittwieser A general reinforcement
learning algorithm that masters chess, shogi and Go through self-play
https://deepmind.com/documents/260/alphazero preprint.pdf, 2017.

https://framadrop.org/r/LHt0z3HqL7#U36CyweXV53YXaCTrLtQZmQB3W3gV3t6sjhr/3Zj63M=
https://web.stanford.edu/~surag/posts/alphazero.html
https://web.stanford.edu/~surag/posts/alphazero.html
https://deepmind.com/documents/260/alphazero_preprint.pdf

	Introduction
	Building the Game
	Building the training pipeline

	Background and Related Work
	Monte Carlo Tree Search
	Convolutional Neural Network

	The Environment
	The Agent
	MCTS implementation
	CNN implementation
	Superior algorithm

	Results and Discussion
	Evolution of performances with the number of iterations

	Conclusion and Future Work
	Motivation for the Othello game
	Results on Othello

	References

